Copied to
clipboard

G = C3×M4(2).8C22order 192 = 26·3

Direct product of C3 and M4(2).8C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×M4(2).8C22, C4.50(C6×D4), (C6×D4).19C4, (C2×D4).7C12, C4.D46C6, (C2×C12).517D4, C12.457(C2×D4), C4.10D46C6, (C2×M4(2))⋊9C6, C23.5(C2×C12), (C22×C4).7C12, (C6×M4(2))⋊27C2, (C22×C12).12C4, M4(2).8(C2×C6), (C2×C12).608C23, (C6×D4).285C22, (C6×Q8).249C22, C12.115(C22⋊C4), C22.10(C22×C12), (C22×C12).409C22, (C3×M4(2)).42C22, (C2×C4).6(C2×C12), (C2×C4○D4).9C6, (C2×C12).19(C2×C4), (C6×C4○D4).17C2, (C2×D4).43(C2×C6), (C2×C4).121(C3×D4), C2.16(C6×C22⋊C4), C4.22(C3×C22⋊C4), (C2×C4).3(C22×C6), (C2×Q8).46(C2×C6), (C3×C4.D4)⋊13C2, C6.104(C2×C22⋊C4), (C22×C4).33(C2×C6), (C22×C6).12(C2×C4), C22.3(C3×C22⋊C4), (C3×C4.10D4)⋊13C2, (C2×C6).30(C22⋊C4), (C2×C6).163(C22×C4), SmallGroup(192,846)

Series: Derived Chief Lower central Upper central

C1C22 — C3×M4(2).8C22
C1C2C4C2×C4C2×C12C3×M4(2)C3×C4.D4 — C3×M4(2).8C22
C1C2C22 — C3×M4(2).8C22
C1C12C22×C12 — C3×M4(2).8C22

Generators and relations for C3×M4(2).8C22
 G = < a,b,c,d,e | a3=b8=c2=d2=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b5, dbd=bc, cd=dc, ece-1=b4c, ede-1=b4cd >

Subgroups: 242 in 150 conjugacy classes, 78 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C12, C12, C12, C2×C6, C2×C6, C2×C6, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C22×C6, C4.D4, C4.10D4, C2×M4(2), C2×C4○D4, C2×C24, C3×M4(2), C3×M4(2), C22×C12, C22×C12, C6×D4, C6×D4, C6×Q8, C3×C4○D4, M4(2).8C22, C3×C4.D4, C3×C4.10D4, C6×M4(2), C6×C4○D4, C3×M4(2).8C22
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C12, C2×C6, C22⋊C4, C22×C4, C2×D4, C2×C12, C3×D4, C22×C6, C2×C22⋊C4, C3×C22⋊C4, C22×C12, C6×D4, M4(2).8C22, C6×C22⋊C4, C3×M4(2).8C22

Smallest permutation representation of C3×M4(2).8C22
On 48 points
Generators in S48
(1 33 22)(2 34 23)(3 35 24)(4 36 17)(5 37 18)(6 38 19)(7 39 20)(8 40 21)(9 44 30)(10 45 31)(11 46 32)(12 47 25)(13 48 26)(14 41 27)(15 42 28)(16 43 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)(26 30)(28 32)(34 38)(36 40)(42 46)(44 48)
(1 41)(2 46)(3 47)(4 44)(5 45)(6 42)(7 43)(8 48)(9 17)(10 18)(11 23)(12 24)(13 21)(14 22)(15 19)(16 20)(25 35)(26 40)(27 33)(28 38)(29 39)(30 36)(31 37)(32 34)
(1 8 3 2 5 4 7 6)(9 16 11 10 13 12 15 14)(17 20 19 22 21 24 23 18)(25 28 27 30 29 32 31 26)(33 40 35 34 37 36 39 38)(41 44 43 46 45 48 47 42)

G:=sub<Sym(48)| (1,33,22)(2,34,23)(3,35,24)(4,36,17)(5,37,18)(6,38,19)(7,39,20)(8,40,21)(9,44,30)(10,45,31)(11,46,32)(12,47,25)(13,48,26)(14,41,27)(15,42,28)(16,43,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48), (1,41)(2,46)(3,47)(4,44)(5,45)(6,42)(7,43)(8,48)(9,17)(10,18)(11,23)(12,24)(13,21)(14,22)(15,19)(16,20)(25,35)(26,40)(27,33)(28,38)(29,39)(30,36)(31,37)(32,34), (1,8,3,2,5,4,7,6)(9,16,11,10,13,12,15,14)(17,20,19,22,21,24,23,18)(25,28,27,30,29,32,31,26)(33,40,35,34,37,36,39,38)(41,44,43,46,45,48,47,42)>;

G:=Group( (1,33,22)(2,34,23)(3,35,24)(4,36,17)(5,37,18)(6,38,19)(7,39,20)(8,40,21)(9,44,30)(10,45,31)(11,46,32)(12,47,25)(13,48,26)(14,41,27)(15,42,28)(16,43,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48), (1,41)(2,46)(3,47)(4,44)(5,45)(6,42)(7,43)(8,48)(9,17)(10,18)(11,23)(12,24)(13,21)(14,22)(15,19)(16,20)(25,35)(26,40)(27,33)(28,38)(29,39)(30,36)(31,37)(32,34), (1,8,3,2,5,4,7,6)(9,16,11,10,13,12,15,14)(17,20,19,22,21,24,23,18)(25,28,27,30,29,32,31,26)(33,40,35,34,37,36,39,38)(41,44,43,46,45,48,47,42) );

G=PermutationGroup([[(1,33,22),(2,34,23),(3,35,24),(4,36,17),(5,37,18),(6,38,19),(7,39,20),(8,40,21),(9,44,30),(10,45,31),(11,46,32),(12,47,25),(13,48,26),(14,41,27),(15,42,28),(16,43,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23),(26,30),(28,32),(34,38),(36,40),(42,46),(44,48)], [(1,41),(2,46),(3,47),(4,44),(5,45),(6,42),(7,43),(8,48),(9,17),(10,18),(11,23),(12,24),(13,21),(14,22),(15,19),(16,20),(25,35),(26,40),(27,33),(28,38),(29,39),(30,36),(31,37),(32,34)], [(1,8,3,2,5,4,7,6),(9,16,11,10,13,12,15,14),(17,20,19,22,21,24,23,18),(25,28,27,30,29,32,31,26),(33,40,35,34,37,36,39,38),(41,44,43,46,45,48,47,42)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F3A3B4A4B4C4D4E4F4G6A6B6C···6H6I6J6K6L8A···8H12A12B12C12D12E···12J12K12L12M12N24A···24P
order1222222334444444666···666668···81212121212···121212121224···24
size1122244111122244112···244444···411112···244444···4

66 irreducible representations

dim111111111111112244
type++++++
imageC1C2C2C2C2C3C4C4C6C6C6C6C12C12D4C3×D4M4(2).8C22C3×M4(2).8C22
kernelC3×M4(2).8C22C3×C4.D4C3×C4.10D4C6×M4(2)C6×C4○D4M4(2).8C22C22×C12C6×D4C4.D4C4.10D4C2×M4(2)C2×C4○D4C22×C4C2×D4C2×C12C2×C4C3C1
# reps122212444442884824

Matrix representation of C3×M4(2).8C22 in GL4(𝔽73) generated by

8000
0800
0080
0008
,
014614
01014
7272072
071072
,
1001
0101
00720
00072
,
0110
1010
00720
00711
,
046159
046059
2727027
054027
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[0,0,72,0,1,1,72,71,46,0,0,0,14,14,72,72],[1,0,0,0,0,1,0,0,0,0,72,0,1,1,0,72],[0,1,0,0,1,0,0,0,1,1,72,71,0,0,0,1],[0,0,27,0,46,46,27,54,1,0,0,0,59,59,27,27] >;

C3×M4(2).8C22 in GAP, Magma, Sage, TeX

C_3\times M_4(2)._8C_2^2
% in TeX

G:=Group("C3xM4(2).8C2^2");
// GroupNames label

G:=SmallGroup(192,846);
// by ID

G=gap.SmallGroup(192,846);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,520,4204,3036,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^8=c^2=d^2=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^5,d*b*d=b*c,c*d=d*c,e*c*e^-1=b^4*c,e*d*e^-1=b^4*c*d>;
// generators/relations

׿
×
𝔽